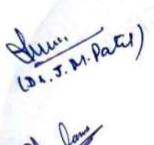
KRANTIGURU SHYAMJI KRISHNA VERMA KACHCHH UNIVERSITY, BHUJ-KACHCHH

Year: 2023-2024

Master of Science in Geology

GEOLOGY

FACULTY OF SCIENCE



SYLLABUS Curriculum as per UGC Guideline With effect from June – 2023

M.Sc. Geology – Revised Syllabus in 2023, KSKV Kachchh University, Bhuj-Kachchh

Semester	Core course	Elective course	Interdisciplinary course	Project/dissertation/ internship/Field	Total Credits
1	4 (5) = 20	NIL	1 (4) = 04	NIL	24
2	3 (5) = 15 1 (4) = 04	NIL	1 (4) = 04	(Field) 02	25
3	2 (5) = 10 1 (4) = 04	2 (4) = 08	NIL	(Field or internship) 02	24
4	1 (5) = 05	2 (5) = 10	NIL	(Dissertation) 10 (Field) 02	27
	58	18	08	16	100

Credit Structure

D.J. Pachia)

(Dr. Crawor Charlen)

Approved by the Board of Studies (Geology)

DEAN FACULTY OF SCIENCE KSKV KACHCHH UNIVERSITY BHUJ-KACHCHH-370001

		Extended Course Stru Semester-I	<u>cture</u>	
Course Category	Paper Code	Title of the Paper	Lab + field details	Credit s (T+P)
Core Course (All are compulsory)	CCGE-101	Structural Geology & Geotectonics	LAB and field visit (Map Sections, Stereographic projection of the structural features etc, Field Visit to structurally and tectonically important sites)	(3+2)
	CCGE-102	Crystallography, Mineralogy, Optics, and Instrumentation Techniques	LAB (megascopic, microscopic minerals and elemental composition of minerals and rocks)	(3+2)
	CCGE-103	Paleontology and Stratigraphy	LAB and Field Visit (fossils identification, micropalaeontology, ichnofacies, Stratigraphic reconstructions, Field Visit to stratigraphical and paleontological important sites)	(3+2)
	CCGE-104	Geomorphology, Remote Sensing and GIS (RS & GIS)	LAB (Satellite Image Interpretation, GIS Software- QGIS, Global Mapper, Surfer etc.)	(3+2)
Elective Course				
Interdisciplinary Course	ICGE-105	Oceanography and Climatology	LAB (Analysis of Meteorological Data, Study of Ocean Sediments)	(3+1)
(Any one out of two courses)	ICGE-106	Natural Resource Management	LAB and Field visit (Mapping of Natural Recourses sites, Field visits to the Natural Recourses sites)	(3+1)
Project/dissertation/	NIL	NIL		NIL
Internship/Field	NIL	NIL		NIL
				(24)

Semester-II

Course Category	Paper Code	Title of the Paper	Lab + field details	Credits (T+P)
Core Course (All are compulsory)	CCGE-207	Igneous Petrology	LAB and Field Visits (Megascopic and microscopic rocks, Norms calculation, Field Visit to igneous terrain)	(3+2)
	CCGE-208	Metamorphic Petrology	LAB and Field Visits (Megascopic and microscopic rocks, Field Visit to metamorphic terrain)	(3+2)
	CCGE-209	Economic and Mining Geology	LAB and Field Visits (Megascopic and microscopic Ore, field visits to the mines sites)	(3+1)
	CCGE-210	Field Techniques in Geology	LAB and Field Visits (Maps and Toposheet Study, Field Mapping, various types of sampling techniques, etc.)	(3+2)
Elective Course				
Interdisciplinary Course (Any one out of two	ICGE-211	Environmental Geology and Disaster Management	LAB and Institutes/Industries Visits (Water and Soil testing, Visits related to Disaster Management, Visit to the relevant sites)	(3+1)
courses)	ICGE-212	Research Methodology, Statistics and Computer application	LAB (Statistical and Computer related practical)	(3+1)
Project/dissertation		NIL		NIL
Internship/Field	Field-001	Field Excursion	Over all 10 days Field studies in two semesters where basic field techniques are taught	(02)
				(25)
		ACHH UNI	VEL	

Course Category	Paper Code	Title of the Paper	Lab + field details	Credits (T+P)
Core Course (All are compulsory)	CCGE-313	Sedimentary Petrology and Sedimentology	LAB and Field Visits (Petrography, Grain size analysis, sieving for sedimentary environment, Field Visit to sedimentary terrain)	(3+2)
	CCGE-314	Geochemistry & Geochronology	LAB and Institutes/Industries Visits (Calculation of Atomic Wt %, Isotopes, K-Ar, Rb-Sr, Sm-Nd Radionuclide Decay, Visit to geochemical and geochronological institute/industries)	(3+1)
	CCGE-315	Engineering Geology and Surveying	LAB and Field Visits (Geotechnical Analysis, Surveying instruments, Interpretation of Surveying Data, Visits to Engineering Geological Sites)	(3+2)
Elective Course (All courses are compulsory)	ECGE-316	Geodesy, Geophysics and Geophysical Exploration Methods	LAB and Institutes/Industries Visits (Geophysical Surveys, Calculations, Academic Visits to the Geophysical and Seismic Institutes/ Industries)	(3+1)
	ECGE-317	Fuel Geology	LAB (Use of calorimeter for coal and petroleum, Interpretation of borehole and seismic data for the reservoir identification)	(3+1)
Interdisciplinary Course	NIL	NIL		NIL
Project/dissertati on	NIL	NIL		NIL
Internship	INTR-002	Internship	Over all 1 week of internship with any one of the institutes or industry is compulsory	(02)
				(26)

Semester-IV				
Course Category	Paper Code	Title of the Paper	Lab + field details	Credits (T+P)
Core Course (All are compulsory)	CCGE-418	Hydrogeology	LAB and Field Visits (Water Quality Testing, Preparation of subsurface profiles, watershed mapping through GIS and RS, Visits for well monitoring and well data collections, visits to groundwater management institutes/NGOs)	(3+2)
Elective Course (All are compulsory)	ECGE-419	Quaternary Geology and Geoarchaeology	LAB and Field Visits (Preparation of Geomorphological maps through RS and GIS, Morphometric Analysis etc. Visits to geomorphologically, Quaternary and geoarchaeologically important sites)	(3+2)
	ECGE-420	Geoheritage, Geoconservation and Geotourism	LAB and Field Visits (TWOS and SWOT Assessment of Geoheritage Sites, Visits to geoheritage and geotourism sites)	(3+2)
Interdisciplinary Course		NIL		NIL
Project/dissertation	ECGE-421	Dissertation / Project	Dissertation with any of the faculties, research institutes, other universities, industry etc. are compulsory and carries 10 credits	(10)
General Geological Field work	Field-003	Field Excursion	A field excursion of minimum 10 days in igneous/ metamorphic/sedimentary/ Quaternary terrain is compulsory	(02)
				(27)

CHCHH UNIVERS

STRUCTURAL GEOLOGY & GEOTECTONICS CCGE-101

Paper	CCGE-101
Code	
Title	STRUCTURAL GEOLOGY & GEOTECTONICS
Unit – 1	Mechanical principles and properties of rocks and their controlling factors
	Theory of Rock Failure
	Concept of Stress and Strain
	• Dynamic and Kinematic analysis of rocks in two dimensions
	• Types of strain ellipses and ellipsoids, their properties and geological significance
	Strain markers in naturally deformed rocks
	Concepts of petrofabrics and symmetry
Unit – 2	Classification and Mechanisms of Folds and Faults
\sim	Distribution of Stress and Strain in folds and faults
	• Classification and genesis of ductile shear zones
	Lineations, foliations, joints and fractures
	• Genesis of planar and linear structures (bedding, cleavage, schistosity, lineation)
	• Stereographic and stereo-net projection
	Interpretation of geological maps
Unit – 3	Plate Tectonics: Concepts and boundaries, mantle plumes.
	Seafloor spreading, triple junctions
	• Case studies of the orogenic belts,
	• Paleomagnetism, hot spots, mantle plumes, convection and mechanism,
	Tectonic Setting, Oceanic ridges, Ophiolites,
	• Cratons and passive margins,
	• Continental rifts, Arc systems, Orogens,
	• Tectonic framework of India,
	• Tectonic features of extensional, compressional, and strike-slip-terrains and
	relevance to plate boundaries.
Practical/	Structural Maps,
Laboratory work	✤ Outcrop Maps,

	 Stereographic and Stereonet projection,
	 Balanced cross sections,
	 Structural Problems
Field component	FIELD WORK FOR MAPPING AND OBSERVATION OF STRUCTURES
Texts /	1. Ramsay, J.G. Folding and fracturing of rocks, McGraw Hill, 1967.
References	 <i>Chosh, S.K.</i> Structural Geology – Fundamentals and modern development, Pergamon, 1993
(Suggested Readings)	 Pergamon, 1995 Hobbs, B.E., Means, W.D. and Williams, P.F. An outline of structural geology, John Wiley, 1976. Davis, G.H. & Reynolds, S.J., Structural Geology of Rocks and Regions, Wiley, 1996. M. P. Billings, Structural Geology, Prentice Hall. 1972. Paor, D. Structural Geology and Personal Computer, Pergamon, 1996. Rowland, S.M. and Duebendorfer, E.M. Structural Analysis and Synthesis, Pergamon, 1994. D M Ragan Structural geology - An Introduction to Geometrical Techniques, John Wiley, 1985. Kent C. Condie, Plate Tectonics and Crustal Evolution, 4th Edition. Kearey P and F.J. Vine, Global Tectonics. Blackwell scientific Publications Frisch, W., Meschede, M., Blakey, R.C. Plate Tectonics: Continental Drift and Mountain Building. Springer. (2011).

SP.

E

CRYSTALLOGRAPHY, MINERALOGY, OPTICS, AND INSTRUMENTATION TECHNIQUES CCGE-102

Paper	CCGE-102			
Code				
Title	CRYSTALLOGRAPHY, MINERALOGY, OPTICS, AND			
	INSTRUMENTATION TECHNIQUES			
Unit – 1	Crystallography:			
	• Definition of Crystal - Classification of crystals into Crystal systems,			
	• Concept of unit cell - Proper and improper symmetry operations,			
	• Concept of Space lattice - Derivation of 14 Bravais lattices – HCP,			
	• Lattice defects (point, line and planar),			
N.Y	Classification of crystals into 32 Point Groups, Concept of Space Group, Natural			
\geq	symmetry,			
	• Transformation of minerals – polymorphism, polytypism, and polysomatism			
Unit – 2	Mineralogy and optics:			
	Atomic structures and mineral/ crystal chemistry			
	• Diagnostic properties of rock forming minerals including clay minerals techniques			
	of mineral identification.			
	• All silicates, sulphates, carbonates, native minerals, sulphides, oxides, sulfosalts,			
	hydroxides, halides, nitrates, borates, chromates, phosphates.			
	• Optics: Properties of light, polarization, interference of light waves,			
	Measurement of RI, Pleochroism, Birefringence,			
	• Optic orientation in different crystallographic systems.			
	• Determination of optic sign of uniaxial and biaxial minerals,			
	• Determination of optic axial Angle,			
	• Conoscopic or convergent polarized light - Generation of Uniaxial and Biaxial			
	interference figures - Forms of interference figures related to sections			
	• Optical accessories like mica, gypsum and quartz plates - Determination of Optic			
	sign of uniaxial and biaxial minerals.			
Unit – 3	Instrumentation and Analytical Techniques:			
	• Sampling and Sample preparation, thin section and polished section making			

	• Techniques in photomicrography,
	• Principles and geological applications of Luminescence,
	Atomic Absorption Spectroscopy
	• X-ray Fluorescence spectroscopy,
	• X-ray diffractometry
Practical/	Crystallography Practical (Elements of Symmetry, Miller Indices, HM symbols,
Laboratory work	stereographic projections; identification of forms with models),
WOIK	 Megascopic and Microscopic identification of rock forming minerals.
	✤ Identification of basic optical properties (uniaxial, biaxial, 2V etc.)
Field component	FIELD WORK FOR MAPPING AND OBSERVATION OF STRUCTURES
Texts /	1. Donald Bloss, Crystallography and Crystal chemistry, Holt Rinehart and
References	Winstar Jr., 1971.
(Suggested	2. Klein, C., Manual of Mineral Science. IInd edition, Wiley (2002).
Readings)	3. J. D. Dana, Manual of Mineralogy, New Haven, 1871.
	4. Dana, E.D., Text Book of mineralogy: With an Extended Treatise on
	Crystallography and
	5. Physical Mineralogy, Wiley, 1949.
	6. Deer, W.A, Howie, R.A., and Zussman, J. An Introduction to rock forming
	minerals, Longman, 1966. 7. Berry, L.G. and Mason, B. Mineralogy, Freeman, 1957.
	8. Kerr, P. F. and Rogers, A.F., Optical Mineralogy. McGraw-Hill, 1977.
	<i>9. Read, H.H.</i> Rutley's Elements of Mineralogy, CBS Publisheres and Distributors. (1960).
	10. Hutchinson, C.S. 1974: Laboratory Handbook of Petrographic Techniques. John Wiley.

ACH

JER

PALEONTOLOGY AND STRATIGRAPHY CCGE-103

Paper Code	CCGE-103
Title	PALEONTOLOGY AND STRATIGRAPHY
Unit – 1	Paleontology:
	• Paleobiology - Diversity of life through time,
	• Taphonomy - processes of fossilization. Taxonomy,
	• Morphology and functional morphology of invertebrates (bivalves, brachiopods,
	gastropods, echinoids, ammonites);
	Microfossils (foraminifera, ostracoda, conodonts, bryozoa);
	• Vertebrate paleonology (Equus, Human);
2	• Paleobotany (plant, spores, pollens).
	• Basic concepts of ecology/paleoecology; classification - ecological and
	taxonomic schemes (diversity and richness).
	Fossils and paleoenvironments,
	Classification and environmental significance of trace fossils,
	• Animal sediment relationship. Applications of micropaleontology.
Unit – 2	Stratigraphy:
	Introduction to stratigraphy,
	• Major global geological/stratigraphical events (viz. Glaciation, deglaciation, mass
	extinction, stromatolites, snow ball earth)
	Standard stratigraphic scale.
	• Various techniques adopted for Stratigraphical analysis: Lithostratigraphy and
	Chronostratigraphy, Biostratigraphy, Sequence Stratigraphy,
	Magnetostratigraphy, Seismostratigraphy
Unit – 3	Indian Stratigraphy:
	Tectonic Framework of India:
	• Tectonic divisions, Cratons (Dharwar, Aravalli, Bastor, Singhbhum,
	Bundelkhad), Mobile belts (Eastern Ghat, Delhi Fold Belt, Satpura and
	Precambrian of Himalaya),

	• Proterozoic Sedimentary basins: Paleoproterozoic (Bijawar, Gwaliar, Papaghn
	Sub-basin) and
	• Mesoproterozoic Basins (Vindhyan, Parinatha-Godavari, Cuddapah),
	• Quaternary Developments in India: Himalayas, Indo-Gangetic Plains, Peninsula
	India,
	• Important vertebrate fossils, plant fossils and microfossils in Indian stratigraphy
Practical/	 Morphological descriptions and illustrations of representative fossils belonging to
Laboratory work	some foraminiferal genera (micropaleontology):
WUIK	Preparation of stratigraphic range charts and biostratigraphic zonation
	 lithological and paleontological symbols
Field	FIELD WORK FOR FOSSIL IDENTIFICATION IN DIFFERENT
component	
component	STRATIGRAPHIC UNITS
Texts /	1. Raup, D.M. and Stanley, S.M. Principles of Paleontology, W.H. Freeman &
References	
(Suggested	Co. 1971.
(Suggested	Co. 1971. 2. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987.
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981.
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers Woods, H. Paleontology Invertebrate, International Book Bureau, 1966.
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers Woods, H. Paleontology Invertebrate, International Book Bureau, 1966. Murray, J.W. Atlas of Invertebrate Macrofossils, Longman. 1985.
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers Woods, H. Paleontology Invertebrate, International Book Bureau, 1966. Murray, J.W. Atlas of Invertebrate Macrofossils, Longman. 1985. Benton, J.B. Vertebrate Paleontology, Chapman & Hall, 1997.
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers Woods, H. Paleontology Invertebrate, International Book Bureau, 1966. Murray, J.W. Atlas of Invertebrate Macrofossils, Longman. 1985.
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers Woods, H. Paleontology Invertebrate, International Book Bureau, 1966. Murray, J.W. Atlas of Invertebrate Macrofossils, Longman. 1985. Benton, J.B. Vertebrate Paleontology, Chapman & Hall, 1997.
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers Woods, H. Paleontology Invertebrate, International Book Bureau, 1966. Murray, J.W. Atlas of Invertebrate Macrofossils, Longman. 1985. Benton, J.B. Vertebrate Paleontology, Chapman & Hall, 1997. M. Ramakrishnana and R. Vaidyanathan: Geology of India, (GSI),
(Suggested	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers Woods, H. Paleontology Invertebrate, International Book Bureau, 1966. Murray, J.W. Atlas of Invertebrate Macrofossils, Longman. 1985. Benton, J.B. Vertebrate Paleontology, Chapman & Hall, 1997. M. Ramakrishnana and R. Vaidyanathan: Geology of India, (GSI), Bangalore
	 Co. 1971. Clarkson, E.N.K. Invertebrate Paleontology and Evolution, ELBS. 1987. Haynes, J.R. Foraminifera, John Wiley. 1981. Shrock and Twenhoefells, Invertebrate Paleontology, CBS publishers Woods, H. Paleontology Invertebrate, International Book Bureau, 1966. Murray, J.W. Atlas of Invertebrate Macrofossils, Longman. 1985. Benton, J.B. Vertebrate Paleontology, Chapman & Hall, 1997. M. Ramakrishnana and R. Vaidyanathan: Geology of India, (GSI), Bangalore Stratigraphic boundary problems of India: Memoirs 16, GSI-Bangalore,

SEMESTER-1 GEOMORPHOLOGY, REMOTE SENSING AND GIS

Paper Code	CCGE-104
Title	GEOMORPHOLOGY, REMOTE SENSING AND GIS
Unit – 1	Geomorphological Studies:
	• Dynamics of Geomorphology,
	• Geomorphic processes and landforms - fluvial, glacial, eolian, coastal and karst
	(erosional and depositional landforms), Submarine relief,
	• Processes – weathering, pedogenesis, mass movement, erosion, transportation and
	deposition.
Unit – 2	Quantitative geomorphology:
S	Geomorphological mapping based on genesis of landforms,
	• Quantitative geomorphology: morphometric analysis, stream channel morphology
	changes, drainage modifications,
	• Application of geomorphology in engineering geology, and environmental studies,
	Geomorphology of India: Geomorphological features and zones
Unit – 3	RS & GIS:
	Introduction and Principles of Remote Sensing:
	• Aerial Photographs and their Geometry,
	Photogrammetry, Satellite Remote Sensing,
	• Image Interpretation and Digital Processing Techniques,
	• Geological Studies: Image Characters and their relations with ground objects based
	on tone, texture and pattern,
	• Evaluation of ground water potential, rock type identification,
	• Interpretation of topographic and tectonic features,
	• Principles and applications of Geographical Information System
Practical/	Laboratory exercise for remote sensing and Photogeology:
Laboratory	\bigstar Topographical map, aerial photo and satellite imagery interpretation for
work	geological and geomorphological applications,
	Basic photogrammetry exercises like parallax measurements for height

	determination,
	 Introduction to digital image processing,
	 Preparation and interpretation of Geomorphic map,
	 morphometric analysis
Field	FIELD WORK FOR LANDFORM IDENTIFICATION AND GROUND
component	TRUTHING OF SATELLITE DATA ANALYSIS
Texts /	1. Thornbury, W.D. Principles of Geomorphology, Wiley Eastern, 1993.
References	2. Bloom Arthur L, Geomorphology: A Systematic analysis of late Cenozoid
(Suggested	landforms.
Readings)	<i>3. Geomorphic Mapping,</i> Developments in Earth Surface Processes 15, Elsevier 2011
	4. Goudie, A., Geomorphic Techniques. Routledge, 1990.
ð	5. Sabnis, F.F. Remote sensing - Principles and Interpretation, W.H. Freemar and Co., 1978.
\varkappa	6. Lillesand, T.M. and Kiefer, R.W. Remote sensing and Image Interpretation John Wiley, 1987.
	7. S. A. Druary, Image Interpretation in Geology,
	8. Pandey, S.N. Principles and Applications of Photogeology, Wiley Eastern
	1987.
	9. Gupta, R. P. Remote Sensing Geology. Springer. 1990.

OCEANOGRAPHY AND CLIMATOLOGY ECGE-105

Paper Code	ECGE-105
Title	OCEANOGRAPHY AND CLIMATOLOGY
Unit – 1	Oceanography:
	• Morphologic and tectonic domains of the ocean floor and various topographical
	features;
	Oceanic circulations, waves and currents, El Niňo, Indian Ocean Dipole,
1	Thermohaline circulation,
	Indian summer and winter monsoon and oceanic conveyor belt.
	• Formation of Bottom waters; major water masses of the world's oceans.
S	• Oceanic sediments: Factors controlling the deposition and distribution of oceanic
\sim	sediments; Tectonic evolution of the ocean basins,
	• Opening and closing of ocean gateways and their effect on circulation,
	• Sea level processes and Sea level changes.
Unit – 2	Climatology:
	Fundamental of climatology.
	• Earth's radiation balance;
	• Latitudinal and seasonal variation of insolation,
	• Temperature, pressure, wind belts, humidity, cloud formation and precipitation,
	water balance.
	• Air masses, air circulation, monsoon, Jet streams, tropical cyclones and
	anticyclones.
	• Classification of climates – Koppen's and Thornthwaite's scheme of classification.
	Climate change.
Unit – 3	Physical Meteorology:
	• Thermal structure of the atmosphere and its composition.
	• Radiation: basic Laws - Rayleigh and Mie scattering, multiple scattering,
	• Radiation from the sun, solar constant, effect of clouds, surface and planetary albedo.

	transfer, Greenhouse effect,Vertical stability of the atmosphere.
Practical/ Laboratory work	 Oceanic circulations, illustrative diagrams of El-Nino and La-Nina, bathymetric diagrams and sea-floor topography
Field component	FIELD WORK TO METEOROLOGICAL DEPARTMENT TO UNDERSTAND THE EQUIPMENTS USED FOR WEATHER FORECAST AND ITS DAY-TO-DAY APPLICATION.
Texts / References (Suggested Readings)	 Kennett, J.P. (1982) Marine Geology. Prentice Hall. Seibold, E. And Berger, W. H. (1982) The sea floor. Springer. Pipkin, B.W., and all (1972). Laboratory Exercises in Oceanography Freeman. C. Donald Ahrens (2014) Essentials of Meteorology: An Invitation to the Atmosphere.Censage. Clift P.D. and Plumb R. A. (2008) The Asian Monsoon. Cambridge. Kidder, S. Q. And Vonder HaarT. H. (1995) Satellite Meteorology: An Introduction, Academic Press Louis J. Battan (1984) Fundamentals of meteorology. Prentice Hall. Savindra Singh- Physical Geography D.S. Lal- Climatology and Oceanography

ACH

JERS

NATURAL RESOURCE MANAGEMENT ECGE-106

Paper Code	ECGE-106
Title	NATURAL RESOURCE MANAGEMENT
Unit – 1	Introduction to Natural Resources
	Description of the Resources
	Classification of the Natural Resources
	• Exhaustible resources – Minerals and Mining,
	• Energy Resources- Oil, Coal, Natural Gas, atomic minerals,
	• Soil as resource – types of soils,
	Rivers resources, Coastal resources, Coastal Processes,
6	Renewable resources,
S	• Water and Land resources, Function and values of the resource,
	• Human use and impact on the resource, Supply and demand of the resources
Unit – 2	Development and Management of Natural Resources,
	• Management tools and techniques – Natural Resources Policy,
	• Watershed Management, Methods of soil Conservation,
	Flood Control Measures, Coastal Zone Management
Unit – 3	• Application of Remote Sensing Techniques in resource management,
	Environmental Impact Analysis,
	Mineral Resources: Conservation and Management,
	Policies and legislation concerning natural resources
Practical/	 Introduction to the methods of Environmental Impact assessment,
Laboratory work	 Assessment of Soil – Water – Energy Mineral Resources,
	 Delineation of natural resources by using remote sensing techniques,
	Study of physical properties of Coal, Study of physical properties of Atomic
	Minerals
Field	VISITING THE MINING SITES, SAMPLE COLLECTION TECHNIQUES OF
component	RESOURCES AND PRACTICAL IMPLICATION STRATEGIES FOR THE
	RESOURCE MANAGEMENT
Texts / References	1. Keller: Environmental Geology

M.Sc. Geology – Revised Syllabus in 2023, KSKV Kachchh University, Bhuj-Kachchh

(Suggested Readings)

- 2. Tank: Environmental Geology
- 3. A.D.Howward and I. Remson : Geology in Environmental Planning
- 4. Strahler and Strahler: Environmental Geology
- 5. Ordway: Earth Science and Environment
- 6. Turk and Turk: Environmental Geology
- 7. K.S.Valdiya : Environmental Geology

IGNEOUS PETROLOGY CCGE-207

Paper Code	CCGE-207
Title	IGNEOUS PETROLOGY
Unit – 1	• Evolution and formation of magma and magmatic systems,
	• Crystallization paths Phase rule and binary and ternary systems,
	• Magmatic differentiation, assimilation and partial melting,
	Various rock suits,
	Chemical and mineralogical classification,
	• IUGS classification of igneous rocks
Unit – 2	
$\operatorname{Om} - 2$	• Petrography, Structures and textures of the Calc-Alkaline, sub-alkaline and alkaline
0	volcanic and plutonic rocks,
	• Field relations of volcanic and plutonic rock bodies (e.g. Plutons, pyroclastics, etc.)
	with major case studies
Unit – 3	• Magmatica and Petrotectonic association (MORB, Flood basalts, arc magmatism,
	ophiolites, Kimberlites, volcanic arcs, plutonic arcs, granite, lamprophyres etc. with
	major case studies)
Practical/	 Megascopic and microscopic studies of igneous rock, NORM calculation and
Laboratory work	rock Classification
Field	FIELD WORK FOR MEGASCOPIC IDENTIFICATION OF COMMON
component	IGNEOUS ROCKS AND THEIR VARIOUS TEXTURES
Texts /	1.Myron G. Best Igneous and Metamorphic Petrology, CBS Publishers
References (Suggested	2. Winter, J.D. An introduction to Igneous and Metamorphic petrolog, Prentice Hall, 2010.
(Suggested Readings)	3.Anthony Hall Igneous Petrology, Longman, 1987.
	4. Carmichael, I.S.E., J. Igneous Petrology, McGraw Hill 1974.
	5.Cox, K.G. Bell, J.D. and Pankhurst, R.J. Interpretation of Igneous Rocks. George Ullen & Unwin 1979.
	6.Wilson, M. Igneous Petrogenesis. Unwin Hyman 1990.
	7.Blatt, H., Tracy, R.J. and Edwards, B. Petrology: Igneous, Sedimentary and Metamorphic Freeman, 2006.
	8. <i>Phillpots</i> A., Introduction to igneous and metamorphic petrology. Prentice Hall Pub., New Delhi.
	9. Ehlers, E.G. and Blatt, H., Petrology: Igneous, Sedimentary and Metamorphic Freeman, 1982.

METAMORPHIC PETROLOGY CCGE-208

Paper Code	CCGE-208
Title	METAMORPHIC PETROLOGY
Unit – 1	• Introduction to Metamorphism: Agents, changes, types of metamorphism,
	• Types of protolith, Classification of metamorphic rocks:
	• Metamorphism of Foliated, lineated; non-foliated and non-lineated rocks,
	• Famous case studies of the world
Unit – 2	Structures and Textures of metamorphic rocks:
	• Process of deformation, recrystallization,
	• Textures of dynamic, regional, contact, non-foliated rocks,
S	Origin of fabrics in metamorphic system.
Unit – 3	• Metamorphic facies, Field relation of metamorphic bodies & metamorphic facies,
\sim	• Metamorphism of pelites, mafic -ultramafic rocks, siliceous and dolomites
	• AFM, AKF, ACF diagrams, Migmatites.
	• Paired orogenic metamorphic belts, Regional burial metamorphism
Practical/	• Megascopic and microscopic studies of igneous rock, Norms calculation and rock
Laboratory	Classification
work Field	FIELD WORK FOR MEGASCOPIC IDENTIFICATION OF COMMON
component	METAMORPHIC ROCKS AND THEIR VARIOUS TEXTURES
Texts / References	1. Yardly, B. W. An Introduction to Metamorphic petrology, Longman
(Suggested Readings)	2. Myron G. Best, Igneous and Metamorphic Petrology, CBS Publishers
	3. Winter, J.D. An introduction to Igneous and Metamorphic petrolog, Prentice Hall,
	2010.
	4. <i>Phillpots A., Introduction to igneous and metamorphic petrology. Prentice Hall Pub.,</i> <i>NewDelhi.</i>
	5. Bhaskar Rao, B. Metamorphic Petrology, IBH & Oxford, 1986.
	6. Blatt, H., Tracy, R.J. and Edwards, B. Petrology: Igneous, Sedimentary and
	Metamorphic Freeman, 2006.
	7. Miyashiro Akiho. Metamorphic Petrology. UCL Press, U.K.
	8. Miyashiro Akiho. Metamorphism and metamorphic belts. George Allen & Unwin
	London.

ECONOMIC AND MINING GEOLOGY CCGE-209

Paper Code	CCGE-209
Title	ECONOMIC AND MINING GEOLOGY
Unit – 1	Ore Genesis:
	• Concept of the term's ore, gangue, grade, tenor, resources, reserves
	• Mineral deposits as products of geochemical cycles in relation to igneous,
	sedimentary, metamorphic and weathering processes,
	Resources and reserves and their classification,
	• Strategic, critical and essential minerals, National Mineral Policy
Unit – 2	Indian ore deposits:
	• Mode of occurrence, geological and geographic distribution, classification and
S	genesis of the following mineral deposits: Chromium, Iron, Manganese, Copper,
\sim	Skarn Deposits, Lead and Zinc, Gold, Aluminum (Bauxite), Barite, Uranium,
	precious and semi-precious stones
Unit – 3	Mining Geology:
	• Terminology in mining, Planning, exploration and exploratory mining of surface
	and underground mineral deposits, Open pit mining, Ocean bottom mining,
	• Mining Hazards: mine inundation, fire and rock burst,
	Mine planning and environmental issues related to mining
Practical/	Megascopic study of ores, Indian occurrences of different economic minerals
Laboratory work	on map, illustrative representation of mining components
Field	FIELD WORK TO DIFFERENT MINES TO UNDERSTAND THE ON FIELD
component	MINING TECHNIQUES AND EQUIPMENTS
Texts /	1. Arogyaswamy, R.N. P (1980). Course in mining Geology, Oxford & IBH Pub. Co
References (Suggested	2. Williams Peter J. Exploration and mining geology. John Wiley & Sons, New York
Readings)	3. Chatterjee, K.K. (1993) An Introduction to Mineral Economics. Wiley Eastern Ltd.
	4. Krishnaswamy, S. (1979) India's Mineral Resources; Oxford and IBH Co.
	5. Asoke Mookherjee (1999) Ore genesis: a holistic approach, Allied Publishers
	6. Evans, A.M. (1993) Ore geology and industrial menerals, Blackwell.
	7. McKinstry, H.E. (1962) Mining Geology. Asia Publishing House.
	8. Clark, G. B. (1967) Elements of Mining. John Wiley.

FIELD TECHNIQUES IN GEOLOGY CCGE-210

Paper Code	CCGE-210
Title	FIELD TECHNIQUES IN GEOLOGY
Unit – 1	 Introduction to field techniques in geology, Field equipment and Safety, Introduction to field observations at different scales, Field notebook and its method for preparing the field diary
Unit – 2	 Field observation and documentation of igneous rocks, metamorphic rocks, sedimentary rocks, Structural information and paleontological information, Construction of graphical logs and geomorphological evidences
Unit – 3	 Making of geological maps and interpretation of numerical Data and Use of various instruments in the field, Photography, Sampling- fossils, minerals, rocks, structures etc., Concluding Remarks.
Practical/ Laboratory work	 Use of Brunton and its demonstration, clinometer and its demonstration, Strike and dip demonstration, Use of geophysical instruments, Rosette diagrams plotting, Preparation and digitization of maps, Interpretation etc.
Field component	FIELDWORK - FOR UNDERSTANDING THE PRACTICALITY AND APPLICATIONS IN THE FIELD
Texts / References (Suggested Readings)	 Angela L. Coe: Geological Field Techniques S.M. Mathur: Guide to Field Geology Frederic H. Lahee: Field Geology Compton and Robert R.: Manual of Field Geology

ENVIRONMENTAL GEOLOGY AND DISASTER MANAGEMENT

ICGE-211

Paper Code	CCGE-211
Title	ENVIRONMENTAL GEOLOGY AND DISASTER MANAGEMENT
Unit – 1	 Environmental Geology: Concepts of Environmental Geology, Geologic and Natural Hazards and hostile environment: Volcanism, earthquakes, landslide and mass movements, floods, water logging,
Kron	 Mineral and Water resource exploration and environmental impact, Waste disposal, Geology and urbanization, Mineral resources and future of mankind, Environmental Problems related to Geology: Indian Perspective
Unit – 2	 Disaster: Introduction to disasters, Theoretical Concepts and Case study Coastal development and Disaster, Increasing frequency of disaster and their reversal, The politics of disaster, Different approach to disaster recovery, Debris disposal and Recycling from disaster.
Unit – 3	 Disaster Management: Human, Personal and International issues: Disaster Management and population with special needs, Disaster Psychology: A Dual perspective, Managing the spontaneous volunteer, First responder and workforce protection, The role of coordination in Disaster Management. Disaster rehabilitation: towards a new perspective Planning, Prevention and Preparedness: The role of training in disaster management, Disaster management and intergovernmental relations, Issues in hospital preparedness, Strategic planning for emergency manager.

Practical/	 Laboratory exercises on mapping of seismic zones of India,
Laboratory work	✤ Active and Passive Volcanoes in world and mapping of earthquake zones in
	world.
	 Field Training with the State / District Level Disaster Management Authority,
	 Training to use various rescue equipment, instruments, First Aid etc.
Field	FIELD WORK TO DISASTER MANAGEMENT DEPARTMENT FOR
component	TRAINNING DURING NATURAL CALAMITIES
Texts /	1. Bell, F.G. Fundamentals of Engineering Geology, Butterworths, 1983.
References (Suggested	2. Krynine, D.P. Judd, W.P. Principles of Engineering Geology, McGraw Hill,
Readings)	1957.
žų.	3. Ronald W. Tank, Environmental Geology, Oxford, 1983.
	4. Keller, E. A., Environmental Geology, Printice Hall, 2010.
	5. K. S. Valdiya, Environmental Geology: Indian Context, McGraw-Hill, 1987.
S	6. Harsh Gupta (2003), Disaster Management, Universities Press.
~	7. Thomas D. Schneid and Larry Collins (2001), Disaster management and
	preparedness: Occupational safety and health guide series, CRC Press.
	and the second second

CHI

JER

SEMESTER-2 RESEARCH METHODOLOGY, STATISTICS AND COMPUTER APPLICATION

ICGE-212 Paper Code **CCGE-212** Title RESEARCH METHODOLOGY, **STATISTICS** AND **COMPUTER** APPLICATION **Unit** – 1 Introduction to Research and Scientific Writing: • Characteristics and Types of Scientific Research, Organizing Scientific Research: Experimental Design, • Research Methodology, Sampling designs. • Research proposals, Paper, Reviews, thesis, conference reports, book reviews, project reports, reference writing and scientific abbreviations. • Preparation and delivery of Scientific Presentations Unit – 2 Introduction to Biometry and Parametric Tests: Statistics, Definition and scope, Sampling and sample designs, • Presentation of data (tabular, graphical and diagrammatic presentation), • Measures of central tendency, dispersion and standard error; • Probability distributions: binomial, Poisson and normal distribution, • Statistical significance (Hypothesis testing, types of error, level of significance), Student's t distribution, Analysis of variance, χ^2 test and goodness of fit, **Regression and Correlation Analysis** Unit – 3 • Computer Applications: History, development and types of computers; • Computer hardware, software and peripheral devices; • Basic working on DOS, Windows and Linux, • General awareness and use of popular software and packages, Microsoft office, Internet- Browsing Hands on practice of Statistics, **Practical**/ Laboratory Hands on practice on Computer related practical work Field FIELD WORK TO DISASTER MANAGEMENT DEPARTMENT FOR **TRAINNING DURING NATURAL CALAMITIES** component 1. C R Kothari (2008) Research Methodology: Methods and Techniques, New Age Texts / References (Suggested International. 2. Wayne Goddard, Stuart Melville (2004): Research Methodology: An Introduction, **Readings**) Juta and Company Ltd. 3. Allan G. Bluman (2005): Elementary statistics: a step-by-step approach, McGraw Hill Publ. 4. Preben Blæsild, Jorgen Granfeldt (2003): Statistics with applications in biology and geology, CRC Press. 5. T. V. Loudon (1979), Computer methods in geology, Academic Press.

SEMESTER-3 SEDIMENTARY PETROLOGY AND SEDIMENTOLOGY CCGE-313

Paper Code	CCGE-313
Title	SEDIMENTARY PETROLOGY AND SEDIMENTOLOGY
Unit – 1	Sedimentology and processes:
	Introduction to Sedimentology,
	• Earth surface system: rock weathering, source of sediments,
	• Liberation and flux of sediments, processes of transport and generation of
	sedimentary structures;
	• Kinds of sedimentary particles; Hydraulics, sediment transportation and structures;
	• sedimentary texture - shape, size, fabric and surface textures, methods of textural
S	analysis, textural parameters and their significance
Unit – 2	Sedimentary Petrology:
\geq	 Rocks of mechanical origin, Gravels, Rudaceous sedimentary rocks
	(Conglomerates & Breccias); Sands & Sandstones; Shales, Argillites & Siltstones;
	• Rocks of chemical and biochemical origin: Limestones & Dolomites;
	• Diagenesis and fluid flow,
	Lithification; Provenance
Unit – 3	Sedimentary Basin and environment:
	Sedimentary environments and facies
	• Physical and chemical parameters of depositional environments;
	Classification of environments;
	• Structures and vertical sequences formed in alluvial, deltaic, coastal, deep sea,
	Aeolian & carbonate environments,
	Evolution of Sedimentary basins.
	Sequence Stratigraphy
Practical/	✤ Microscopic and megascopic petrography of common sedimentary rocks,
Laboratory	grain size analysis,
work	 Determination of roundness and sphericity.
Field	FIELD WORK FOR IDENTIFICATION AND OBSERVATION OF COMMON
component	SEDIMENTARY ROCKS AND STRUCTURES

Texts / 1. Blatt, H., Middleton, G.V. and Murray, R.C. (1980): Origin of Sedimentary References Rocks, Prentice-Hall Inc. (Suggested 2. Collins, J.D., and Thompson, D.B. (1982): Sedimentary Structures, George **Readings**) Allen and Unwin, London. 3. Lindholm, R.C. (1987) A Practical Approach to Sedimentology, Allen and Unwin, London. 4. Miall, A.D. (2000): Principles of Basin Analysis, Sipringer-Verlag. 5. Pettijohn, F.J. (1975): Sedimentary Rocks (3rd Ed.), Harper and Row Publ., New Delhi. 6. Reading, H.G. (1997): Sedimentary Environments and facies, Blackwell Scientific Publication. 7. Reineck, H.E. and Singh, (1973): **Depositional** *Sedimentary I.B*. Environments, Springer- Verlag. 8. Selley, R. C. (2000) Applied Sedimentology, Academic Press. 9. **Tucker, M.E.** (1981): Sedimentary Petrology: An Introduction, Wiley and Sons, New York. 10. Tucker, M.E. (1990): Carbonate Sedimentolgy, Blackwell Scientific Publication.

GEOCHEMISTRY & GEOCHRONOLOGY CCGE-314

~ -

Paper Code	CCGE-314
Title	GEOCHEMISTRY & GEOCHRONOLOGY
Unit – 1	Basics of Geochemistry:
	• Origin and abundance of elements in the solar system and in the Earth and its
	constituents,
	• Cosmic abundance of elements, composition of planets and meteorites.
	• Atomic structures and properties of elements in the Periodic Table,
	• Special properties of transition and rare earth elements,
	• Geochemistry of hydrosphere, lithosphere, biosphere and atmosphere.
Unit – 2	Geochronology:
S	• Introduction and physics of nucleus, radioactive decay, low of radioactive decay,
\sim	half-life period.
	• Stable isotopes of oxygen and hydrogen,
	• Geochemistry of Radioactive Isotopes: Rb, Sr, K, Ar, Sm, Nd, U, Th, Pb;
	• Radiogenic Isotope Geochronometers: Sm-Nd method, Rb-Sr method, U-Pb, Th-
	Pb, Pb-Pb method,
	Other dating methods e.g. Thermoluminiscence, OSL
Unit – 3	Application of Geochemistry:
	• Stable Isotopes: nature, abundance and fractionation;
	 Laws of thermodynamics;
	• Mineral stability in Eh-pH diagram; rock weathering and soil formation;
	• Geochemistry and distribution of radiogenic minerals in rocks, minerals and
	sediments special reference to U-Th in India
Practical/	✤ Calculations of atomic weight of elements with reference to isotopes;
Laboratory work	Calculation and
	 Plotting of binding energy and neutron/proton ratios of various isotopes;
	 Problems related to radioactive decay of nuclides;
	✤ Determination of K-Ar ages; Ages, initial ratios and plotting of isochrones
	using Rb-Sr and Sm-Nd isotope data

Field	FIELD WORK FOR SAMPLE COLLECTION AND VISIT TO DIFFERENT
component	LABORATORIES FOR THEIR GEOCHEMICAL ANALYSIS AND
	UNDERSTANDING DATING TECHNIQUES
Texts /	1. Mason, B. Principles of Geochemistry, Wiley Eastern, 1982
References (Suggested	2. Krauskopf, K.B. Introduction to Geochemistry, Mc Graw Hill, 1994
Readings)	3. Faure, G. Inorganic Geochemistry, Prentice Hall, 1991.
	4. Aswathnarayana, U. Principles of Nuclear Geology, Oxford Press, 1985.
	5 Faul II (Ed.) Nuclean Coolean Wiley 1054

ENGINEERING GEOLOGY AND SURVEYING CCGE-315

Paper Code	CCGE-315
Title	ENGINEERING GEOLOGY AND SURVEYING
Unit – 1	 Engineering Geology: Role of geology in civil construction, in planning, location, design, construction and performance of major civil engineering structures; Tunnels, Buildings: Site Exploration and Foundation, Bridges and Pavements; Dams and Reservoirs, Structures in earthquake prone regions, rocks as construction materials
Unit – 2	 Geotechnical studies: Physico-mechanical properties of rocks and soils; rock index tests; Rock failure criteria (Mohr-Coulomb, Griffith and Hoek-Brown criteria); Shear strength of rock discontinuities; Rock mass classifications (RMR and Q Systems); In-situ stresses; Analysis of slope stability
Unit – 3	 Surveying: Introduction to Surveying and various types of surveying methods, Principles, techniques and use of Total Station (digital theodolite), chain and plane table survey, Prismatic Compass, Abney Level, Remote Sensing survey and there use in geological and geomorphic mapping
Practical/ Laboratory work	 Illustrative diagrams of different dams with its terminology, Hands on practice of plane table survey, Total station and remote sensing surveying
Field component	FIELD WORK INCLUDES GEOLOGICAL MAPPING OF THE AREA, APPLICATION OF TOTAL STATION, PLANE TABLE SURVEY AND VISIT TO DIFFERENT CONSTRUCTION SITES TO UNDERSTAND THE FIELD CONCEPTS OF ENGINEERING GEOLOGY
Texts / References (Suggested Readings)	 Krynine D P & Judd W R (1998) Principles of engineering geology & geotechniques; McGraw Hill,NY Bell F G (1980) Engineering geology and geotechniques; Butterworths, London. Bell F G (1983) Fundamentals of engineering geology; Butterworths, London. Zaruba, Q. and Mencl, V. (1976) Engineering geology; Scientific publishing Amsterdam.

GEODESY, GEOPHYSICS AND GEOPHYSICAL EXPLORATION METHODS ECGE-316

Paper Code	ECGE-316			
Title	GEODESY, GEOPHYSICS AND GEOPHYSICAL EXPLORATIO METHODS			
Unit – 1	Geodesy:			
	• History and introduction of Geodesy, Principles and techniques in Geodesy,			
	• Physical and mathematical Geodesy,			
	• Satellite Geodesy, Datum, coordinate system, geodetic instrumentation,			
1	 Principles of gravity of the earth, gravity survey, 			
	• Geomagnetism, magnetism of the earth, rock magnetism,			
2	• Paleomagnetism, eustasy and isostasy			
Unit – 2	Geophysics:			
	• Density distribution, Density Vs. depth profile,			
	• Seismology and interior of the Earth, Seismic waves and their propagation, Study			
	of Seismograms,			
	• Composition and evolution of the crust, mantle and core, Geoelectricity			
Unit – 3	Geophysics and Geophysical Exploration:			
	• Introduction, Principles and Limitations of Geophysics: Earth through geophysics,			
	Data Acquisition and Processing;			
	• Gravity method; Geomagnetic methods; Electrical Methods; Resistivity Methods; Seismic			
	Methods; Radiometric Methods; GPR, Magnetic Methods			
Practical/	Hands-on practice of different geophysical instruments.			
Laboratory	C/J CZ			
work Field	FIELD WORK APPLICATION OF DIFFERENT GEOPHYSICAL			
component	EQUIPMENTS AND ITS DATA INTERPRETATION			
Texts /	1. Milsom, J., (2003) Field Geophysics, Wiley.			
References	2. Lowrie, W. (2007) Fundamentals of Geophysics, Cambridge.			
(Suggested	3. Howell, B.F. (1959) Introduction to Geophysics. McGraw-Hill.			
Readings)	4. Mussett, A. E. & Khan, M.A., (2000) Looking into the Earth: An introduction to			
	Geological Geophysics. Cambridge. 5. Bristow, C.S. & Jol, H.M. (2003) Ground Penetration Radar in Sediments. Geol. Soc. of			
	<i>America sp. Publ</i>			

FUEL GEOLOGY ECGE-317

ECGE-31/				
Paper Code	ECGE-317			
Title	FUEL GEOLOGY			
Unit – 1	Coal as fuel:			
	• Origin of Coal (peat, lignite, bitumen and anthracite);			
	Classification, Ranks and Grading of coal;			
	• Chemical Characterization; Coal Petrology and its application;			
	• Coal Bed Methane (CBM) – An unconventional petroleum system;			
	• Methods of coal prospecting and production in India.			
Unit – 2	Petroleum as fuel:			
	• Petroleum – Composition, Origin, Occurrence, Migration and Accumulation of			
N.S.	Hydrocarbons; Petroleum traps; Reservoir rocks,			
\geq	• Conditions & mechanisms. Petroleum exploration - Geological, geophysical and			
	geochemical methods of petroleum exploration;			
	• Drilling rigs, Drill holes, Different methods of drilling,			
	• Coring; Casing and Cementation and Drilling fluids;			
	• Functions of Petroleum Geologist; Well Completion and Stimulation.			
Unit – 3	Atomic Fuel:			
	• Mode of occurrence and association of atomic minerals in nature.			
	• Atomic minerals as source of energy,			
	• Methods of prospecting and productive geological horizons in India;			
	• Nuclear power stations of the country and future prospects, atomic fuels and			
	environment			
Practical/ Laboratory work	 Identification of coal and petroleum basins on India Map 			
Field	FIELD WORK TO COAL MINES FOR ON-FIELD UNDERSTANDING OF			
component	TECHNIQUES USED FOR ITS EXPLORATION			
Texts / References	 Bhagwan Sahay. (1994) Petroleum exploration and exploitation practices. Allied Pub Duchagen de P. G. Theorem I. I. C. et al. 			
(Suggested	 Deshpande B. G. The world of petroleum. Lenerger A. L. Carlery of Petroleum, CPS Pub. 			
Readings)	 Levorson A. I., Geology of Petroleum. CBS Pub. North F. K. (1085) Betroleum Coology. 			
	 North F. K. (1985) Petroleum Geology. Selley R. C. (1985) Elements of Petroleum Geology. Academic Press. London 			
	5. Severy R. C. (1905) Liements of 1 erroreum Geology. Actuemic 1 ress. London			

- 6. Chandra, D., Singh, R.M. Singh, M.P. (2000): Textbook of Coal (Indian context), Tara Book Agency, Varanasi.
- 7. Scott, A.C. (1987): Coal and Coal-bearing strata: Recent Advances, Blackwell Scientific Publications.
- 8. Singh, M.P. (1998): Coal and organic Petrology, Hindustan Publishing Corporation, NewDelhi.
- 9. Stach;, E., Mackowsky, M-Th., Taylor, G.H., Chandra, D., Teichumullelr, M. and
- 10. **Teichmuller R.** (1982): Stach Texbook of Coal petrology, Gebruder Borntraeger, Stuttgart.
- 11. Thomas, Larry (2002): Coal Geology, John Wiley and Sons Ltd., England.
- 12. Van Krevelen, D. W. (1993): Coal: Typology-Physics-Chemistry-Constitution), Elsevier Science, Netherlands.
- 13. Dahlkamp, F.J. (1993) Uranium Ore Deposits. Springer.
- 14. Boyle, R.W. (1982). Geochemical Prospecting for Thorium and Uranium Deposits. Elsevier.

HYDROGEOLOGY

С	C	G	E٠	-4	1	8	
_	-	_				-	

Paper Code	CCGE-418
Title	HYDROGEOLOGY
Unit – 1	Groundwater:
	• Groundwater Origin, types, importance, precipitation, evaporation, transpiration,
	evapotranspiration, infiltration,
	Hydrologic properties of rocks; Runoff,
	• Elementary theory of groundwater flow; Darcy's law and its range of validity,
	• Pumping tests – principles – types of pumping tests, procedures,
	• Determination of aquifer properties and well characteristics by simple graphical
S	methods – significance of transmissivity and storability data.
Unit – 2	• Ground water quality, estimation and methods of treatment for various uses,
\sim	• Water contaminants and pollutants,
	• Well hydraulics: confined, unconfined, steady and unsteady and radial flows
Unit – 3	Groundwater levels and fluctuations:
	• Various causes of water level fluctuations.
	• Fresh and salt water relationship in coastal areas; Ghyben-Herzberg principle and
	its modification,
	• Prevention and control of sea water intrusion,
	Groundwater provinces of India.
	Basin wise groundwater development:
	Groundwater inventory.
	• Basic ideas of groundwater management,
	Artificial recharge and water logging.
	• Quality and geochemistry of groundwater
Practical/	 Calculations and illustrative representation of well-inventory data,
Laboratory	 Calculations of numerical on porosity, hydraulic conductivity, transmissivity,
work	storativity, Salt and freshwater interface, contour map preparation.
	 Piper-plot, Wilcox plot and USSL Salinity Chart, Watershed demarcation.
Field	FIELD WORK FOR GEOHYDROLOGICAL INVESTIGATION, VARIOUS
component	

DRILLING METHODS (DR/ DTH), VISIT TO ARTIFICIAL RECHARGE SITE, BORE-HOLE LOGGING

Texts / References (Suggested Readings)

- 1. Davies, S.N. and De Wiest, R.J.M. (1966) Hydrology, John Wiley, N.Y.
 - 2. Fetter, C.W. (1990) Applied Hydrology, Prentice Hall
 - 3. Todd, D.K. (1980) Groundwater Hydrology. John Wiley& Sons, N.Y.

SEMESTER-4 QUATERNARY GEOLOGY AND GEOARCHAEOLOGY ECGE-419

Paper Code	ECGE-419
Title	QUATERNARY GEOLOGY AND GEOARCHAEOLOGY
Unit – 1	Quaternary Geology:
	Basics of Quaternary Geology; Quaternary Stratigraphy:
	• Oxygen Isotope stratigraphy, biostratigraphy and magnetostratigraphy.
	• Quaternary climates – glacial-interglacial cycles, eustatic changes, proxy indicators
	of paleoenvironmental/ paleoclimatic changes,
	• Responses of geomorphic systems to climate, sea level and tectonics on variable
	time scales in the Quaternary, Late Quaternary Sea level,
S	• Neotectonics and active tectonics, landforms geomorphology, Geomorphic
S	markers/ indices,
\sim	• Quaternary dating methods: Radiocarbon, Uranium series, Luminescence, Amino-
	acid, relative dating methods
Unit – 2	Paleoseismology:
	• Introduction to paleoseismology, Prehistoric earthquakes and dating, recurrence
	and dating, Co-seismic event horizon, co-seismic uplift,
	• Field techniques in paleoseismology, mapping paleoseimic landforms, Prehistoric
	stratigraphy.
	• Paleoseismology of extensional and compressional/ subduction zone tectonic
	environments
Unit – 3	• Geoarchaeology:
	Introduction to Geoarchaeology:
	• Definition and scope of geoarchaeology, History of geoarchaeology,
	• Role of geoarchaeology in archaeological research,
	• stratigraphy and site formation processes and their effects on the archaeological
	record, Methods for identifying and interpreting stratigraphic sequences,
	• Paleoenvironmental reconstruction, proxy data and their interpretation: important
	case studies of paleoenvironmental reconstruction in archaeology.
	• Dating Geoarchaelogical Material:

	• Evolution of man and Stone Age cultures
	• Landscape Evolution and Human Impact: The role of environmental change in
	human evolution,
	• Human impact on landscapes over time: some important case studies
Practical/	 Morphometric exercise, TL, OSL, C14 Laboratory visit
Laboratory work	• Morphometric exercise, TL, OSL, C14 Laboratory visit
Field component	FIELD WORK TO IDENTIFY QUATERNARY STRUCTURES AND GEOMORPHIC MARKERS OF NEOTECTONICS, FIELD VISIT TO GEOARCHAEOLOGICAL SITES
Texts /	1. Bull W. D. (1991) Geomorphic Responses to Climatic Change, Oxford Uni.
References (Suggested	Press New York
Readings)	2. Keller E. A. (1986) Active Tectonics National Academic Press, New York
	3. Bull and Mc Fadden, Tectonic Geomorphology
S S	4. James P. McCalpin (2009), Paleoseismology, Academic Press
0	5. Schumm, S. A. (1977), The Fluvial System Wiley New York
	6. Williams, M.A.J. et al., Quaternary Environments, Edward Arnolds (1993).
	7. Lowe, J.J. & Walker, M.J.C. Reconstructing Quaternary Environments, Longman (1984).
	8. N. Tiwari; V. Singh; S. B. Mehra: Quaternary Geoarchaeology of India,
	2023
	9. Christopher L. Hill, Jr. Rapp, George: Geoarchaeology: The Earth-Science
	Approach to Archaeological Interpretation (2006)

ACHC

JERSI

SEMESTER-4 GEOHERITAGE, GEOCONSERVATION AND GEOTOURISM ECGE-420

Paper Code	ECGE-420
Title	GEOHERITAGE, GEOCONSERVATION AND GEOTOURISM
Unit – 1	Geoheritage:
	• Introduction to Geoheritage: Definition and scope of geoheritage,
	• Importance and challenges of geoheritage conservation,
	• The role of geologists in geoheritage management.
	Geological Features and Landscapes for geoheritage perspective,
	• Case studies of iconic geological features around the world,
	• UNESCO guidelines on Geoheritage and conservation, assessment and valuation
	of geoheritage resources:
N.S.	Methods for assessing and mapping geoheritage resources,
Unit – 2	Geoconservation:
	• Principles of Geoconservation, geodiversity and its importance for
	geoconservation,
	• Strategies for sustainable geoconservation and management of geoheritage sites.
	• Geoconservation techniques and tools, techniques for site assessment, monitoring,
	and management,
	• Geotechnical methods for stabilization and restoration of geological features,
	• Use of geospatial tools and technologies in geoconservation
Unit – 3	Geotourism:
	• Geotourism and Interpretation: Definition and principles of geotourism,
	• Education for geoheritage and geotourism,
	• Global case studies of successful geotourism initiatives,
	• Geoheritage Policy and Management: Stakeholder engagement and participation
	in geoheritage management, current issues and future directions in Geoheritage:
	• Emerging challenges and opportunities in geoheritage conservation and
	management,
	• Concept of Geopark, Geopark through Geotourism, Employment opportunities
	and economic developments through Geotourism.

Practical/	SWOT and TWOS Analysis of Geoheritage sites. Geopark Evaluation of
Laboratory	geoheritage Sites
work	
Field	 FIELD WORK TO GEOHEROTAGE AND GEOTOURISM SITES
component	
Texts /	1. F. Wolfgang Eder, Peter T. Bobrowsky, Jesus Martinez-Frias: Geoheritage,
References	Geoparks and Geotourism (2023)
(Suggested	
Readings)	2. Emmanuel Reynard, José Brilha: Geoheritage, - Assessment, Protection, and
	Management (2017)
	3. R.B. Singh, Dongying Wei, Subhash Anand: lobal Geographical Heritage,
	Geoparks and Geotourism: Geoconservation and Development (Advances in
	Geographical and Environmental Sciences) (2021)
	4. Thomas A. Hose, Boydell & Brewer: Geoheritage and Geotourism: A
	European Perspective (2016)
6	

DISSERTATION ECGE-421

Paper Code	ECGE-421
Title	DISSERTATION (10 Credits for Entire Project/ Dissertation, Preparation of report, Internal Evaluation through Presentation, Laboratory work etc.) (Dissertation equal to two course work)
	(Dissertation/ Project work/ Industrial Training Report Environmental Issue/Survey Project Report)
Krohis	 The purpose of this exercise is to become familiar with research methods, computer application, literacy and the presentation skills. Moreover, to think about how to approach, communicate and assess geology and geological problems from various viewpoints. All viewpoints must be addressed in your outline and project. The student has the freedom to select any research problem related to geology; they can also work for their masters' thesis in the department or research institutes or industry with prior communication and approval from both the side. 1. Select any geological problem/ Research Problem in consultation with the faculty for proper guidance. 2. Learn what resources are available and how to access them
	 Collect references, secondary information on the topic and prepare bibliography Set the methodology, approve it from faculty/supervisor and proceed for field and
	 experimental work. 5. Collect findings Record Results (statistics/data tables) 6. Interpret and explain results (using charts) 7. Conclusion and preparation of detailed report/thesis 8. Use outline and related research for presentation of your work
	The outline must include the following:
	 For guidelines and format/ consult faculty. Literature Review section should include citations and/or references from previous studies of the topic References must be taken from a book, journal, newspaper and Internet. Make certain that your cited sources are in APA Citation Style.
	A 15-minute formal oral presentation during the final examination.

Structure of the Question Paper for the University Exam

KSKV Kachchh University: BHUJ

M.Sc. (Geology) Semester: I to IV

Total Marks: 70, Duration: 3 hours

Passing standard: 28 Marks

FOR SEMESTER-END EXAMS (Sem I to IV) All papers

Subject: Total Marks: Time: Geology

70 (Total Units: Three)

Three Hours

PATTERN OF QUESTION PAPER

Question	Question type	Marks
No.	.01 7.511	
	Section - I	
1	Descriptive question with internal option. Short notes or	12
	explanatory note can also be asked (From Unit : I)	
	Example: Q-1 or Q-1	
2	Descriptive question with internal option. Short notes or	12
	explanatory note can also be asked (From Unit : II)	
	Example: Q-2 or Q-2	
3	Descriptive question with internal option. Short notes or	12
	explanatory note can also be asked (From Unit : III)	
	Example: Q-3 or Q-3	
4	Descriptive question. Short notes or explanatory note can	12
	also be asked	
	Total no. of short notes/ questions : 4	
5	(Attempt any three - Each question carries four marks)	
	(3X4)	
	(From Unit I to III)	
	Section : II	1
5	Short questions – No option	22
	No. of Questions : 11	
	Each carries 2 marks	
	(From Unit I to III)	

• The examination pattern of the university is 70% external and 30% internal.

- Types of questions for section A and Question 5 may be varied like: one line answers / two line answers / definitions / reasoning / drawing small figures/ label the figure / fill in the blanks / multiple choice question/ one word answer / match the pairs etc.
- Excursion/ Project work/ Visit/ Tour/ report and submission of specimens / Charts/ Model/ Fresh Material/ other activity (Given by teacher or as a part of Syllabus) will be mandatory for all the students.

Semester – I						
Core Papers						
Paper No.	Title	Credits		Marks		
	Core Papers (All are compulsory)	Theory	Practical	(U+C)		
CCGE-101	Structural Geology & Geotectonics	03	02	100 (70+30)		
CCGE-102	Crystallography, Mineralogy, Optics, and Instrumentation Techniques	03	02	100 (70+30)		
CCGE-103	Paleontology and Stratigraphy	03	02	100 (70+30)		
CCGE-104	Geomorphology, Remote Sensing and GIS (RS & GIS)	03	02	100 (70+30)		
	Interdisciplinary papers (Any one out of two papers)					
ICGE-105	Oceanography and Climatology	03	01	100 (70+30)		
ICGE-106	Natural Resource Management	03	01	100 (70+30)		
	500 (350+150)					
	150 (105+45)					
	50					
Total Marks (Practical + Viva)				200		
Grand Total for Sem. I				700		

Distribution of Credits and Marks for Each Semester of M.Sc. Geology

CCGE-208Metamorphic Petrology0302100CCGE-209Economic and Mining Geology0301100	• ks (U+C) (70+30) (70+30)
Core Papers (All are compulsory)CCGE-207Igneous Petrology0302100CCGE-208Metamorphic Petrology0302100CCGE-209Economic and Mining Geology0301100	(70+30)
CCGE-207 Igneous Petrology 03 02 100 CCGE-208 Metamorphic Petrology 03 02 100 CCGE-209 Economic and Mining Geology 03 01 100	(70+30)
CCGE-208Metamorphic Petrology0302100CCGE-209Economic and Mining Geology0301100	、 /
CCGE-209 Economic and Mining Geology 03 01 100	(70+30)
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(70+30)
CCGE-210Field Techniques in Geology0303100	(70+30)
Interdisciplinary papers (Any one out of two papers)	
ICGE-211Environmental Geology and Disaster0301100Management0301100	(70+30)
ICGE-212 Research Methodology, Statistics and 03 01 100 Computer application	(70+30)
	artmental ssment)*
Total Credits 15 11	
Total Credits for Sem. II 26	
Total Marks (Theory) 500	(350+150)
Practical 150	(105+45)
Viva 50	
Total Marks (Practical+ Field excursion + Viva) 300	
Grand Total for Sem. II 800	

• Departmental Assessment consists of field performance, Field Report and Field Excursion examination

CHI

JER

Semester – III						
Core Papers						
Paper No.	Title	Credits		Marks		
	Core Papers (All are compulsory)	Theory	Practical	(U+C)		
CCGE-313	Sedimentary Petrology and Sedimentology	03	02	100 (70+30)		
CCGE-314	Geochemistry & Geochronology	03	01	100 (70+30)		
CCGE-315	Engineering Geology and Surveying	03	02	100 (70+30)		
ECGE-316	Geodesy, Geophysics and Geophysical Exploration Methods	03	01	100 (70+30)		
ECGE-317	Fuel Geology	03	01	100 (70+30)		
INTR-002	Internship		02	100 (Departmental Assessment)*		
	Total Credits	15	09			
Total Credits for Sem. I 24						
	500 (350+150)					
	150 (105+45)					
	50					
Total Marks (Practical + Internship + Viva)				300		
Grand Total for Sem. I				800		

• Departmental Assessment consists of field performance, Field Report and Field Excursion examination

CHI

JER

Semester – IV					
Paper	Title	Credits		Marks	
		Theory	Practical		
	(U+C)				
CCGE-418	Hydrogeology	03	02	100 (70+30)	
	Elective papers (All are compulsory)				
ECGE-419	Quaternary Geology and Geoarchaeology	03	02	100 (70+30)	
ECGE-420	Geoheritage, Geoconservation and Geotourism	03	02	100 (70+30)	
ECGE-421	Project/dissertation		10	200 (140+60)	
FIELD-003	Field Excursion		02	100	
	Total Credits	09	18		
	Total Credits for Semester IV	27			
	Τα	500 (350+150)			
		150 (105+45)			
		50			
	Total Marks (Practical + Fiel	300			
	Grand Total for Sem. II				

